Influence factor research on deacidification process for high carbon content gas field by numerical simulation—a case study of the Oudeh gas field
نویسندگان
چکیده
INTRODUCTION High concentrations of CO2 in natural gas affect its calorific value and corrode the equipment and pipelines related to its transportation and usage. Therefore, strict control over the H2S and CO2 contents in natural gas is essential. CO2 is an important industrial gas that can bring a great deal of economic profit when it is fully utilized. CASE DESCRIPTION The natural gas produced at the Oudeh gas field in Syria contains high carbon content natural gas, in which the CO2 content is in the range of 17.5-18.8 %, while the H2S content is in the range of 2.8-3.2 %. However, there have been few studies conducted on treatment solutions for natural gas with high carbon contents. In this paper, several commonly used methods for deacidification of natural gas were introduced. Among these methods, the most suitable one was chosen for desulfurization and decarbonization of the natural gas produced at the Oudeh gas field based on its gas quality. CONCLUSIONS Optimization and analysis of the primary operating parameters for the desulfurization and decarbonization processes were conducted to obtain the optimized values for the input temperature of the lean solution (42 °C), reflux ratio (0.8), number of trays in the absorber unit (17) , and circulation rate of the lean solution (330 m(3)/h), etc. Additionally, the influence of the operating pressure of the regenerator unit on the regeneration system was also investigated. The energy consumption of the apparatus and the corrosion level of sour gas to the apparatus were reduced after optimization. Based on the investigation of the natural gas treatment for this gas field, it can serve as a reference for the purification of high carbon contents natural gas.
منابع مشابه
Enhanced Gas Recovery with Carbon Dioxide Sequestration in a Water-drive Gas Condensate Reservoir: a Case Study in a Real Gas Field
Gas reservoirs usually have high recovery due to high mobility and low residual gas saturation, although some of them producing under water-drive mechanism have low recovery efficiency. Encroachment of water into these reservoirs traps considerable amount of gas and increases the maximum residual gas saturation, which results in the reduction of gas and condensate production. Generally, the rec...
متن کاملNumerical Simulation of Hydraulic Frac-turing Process for an Iranian Gas Field in the Persian Gulf
Most of the Iranian oil and gas wells in the Persian Gulf region are producing through their natural productivity and, in the near future, the use of stimulation methods will be undoubtedly necessary. Hydraulic fracturing as a popular technique can be a stimulation candidate. Due to the absence of adequate research in this field, numerical simulation can be an appropriate method to investigate ...
متن کاملQuantitative risk management in gas injection project: a case study from Oman oil and gas industry
The purpose of this research was to study the recognition, application and quantification of the risks associated in managing projects. In this research, the management of risks in an oil and gas project is studied and implemented within a case company in Oman. In this study, at first, the qualitative data related to risks in the project were identified through field visits and extensive interv...
متن کاملNumerical simulation of transient natural gas flow in pipelines using high order DG-ADER scheme
To increase the numerical accuracy in solving engineering problems, either conventional methods on a fine grid or methods with a high order of accuracy on a coarse grid can be used. In the present research, the second approach is utilized and the arbitrary high order Discontinues Galerkin Arbitrary DERivative (DG-ADER) method is applied to analyze the transient isothermal flow of natural gas th...
متن کاملExperimental and Numerical Pore Scale Study of Residual Gas Saturation in Water/Gas Imbibition Phenomena
Residual gas saturation is one of the most important parameter in determining recovery factor of water-drive gas reservoir. Visual observation of processes occurring at the pore level in micromodels can give an insight to fluid displacements at the larger scale and also help the interpretation of production performance at reservoir scale. In this study experimental tests in a glass micromod...
متن کامل